Tuesday, May 15, 2012

Is your WiFi device fast enough?

,

The speed of a wireless network depends on several factors including the Wi-Fi technology standards it supports.
We are here to inform you about these 'standards' a Wi-Fi device support.

Any device that uses a Wi-Fi standard is attached to a speed limit, where two devices can 'talk' at the same Hz as fast as possible....


802.11a

The 802.11a standard uses the same data link layer protocol and frame format as the original standard, but an OFDM based air interface (physical layer). It operates in the 5 GHz band with a maximum net data rate of 54 Mbit/s, plus error correction code, which yields realistic net achievable throughput in the mid-20 Mbit/s.
Since the 2.4 GHz band is heavily used to the point of being crowded, using the relatively unused 5 GHz band gives 802.11a a significant advantage. However, this high carrier frequency also brings a disadvantage: the effective overall range of 802.11a is less than that of 802.11b/g. In theory, 802.11a signals are absorbed more readily by walls and other solid objects in their path due to their smaller wavelength and, as a result, cannot penetrate as far as those of 802.11b. In practice, 802.11b typically has a higher range at low speeds (802.11b will reduce speed to 5 Mbit/s or even 1 Mbit/s at low signal strengths). 802.11a also suffers from interference, but locally there may be fewer signals to interfere with, resulting in less interference and better throughput.

802.11b

802.11b has a maximum raw data rate of 11 Mbit/s and uses the same media access method defined in the original standard. 802.11b products appeared on the market in early 2000, since 802.11b is a direct extension of the modulation technique defined in the original standard. The dramatic increase in throughput of 802.11b (compared to the original standard) along with simultaneous substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology.
802.11b devices suffer interference from other products operating in the 2.4 GHz band. Devices operating in the 2.4 GHz range include: microwave ovens, Bluetooth devices, baby monitors, and cordless telephones.

802.11g

In June 2003, a third modulation standard was ratified: 802.11g. This works in the 2.4 GHz band (like 802.11b), but uses the same OFDM based transmission scheme as 802.11a. It operates at a maximum physical layer bit rate of 54 Mbit/s exclusive of forward error correction codes, or about 22 Mbit/s average throughput. 802.11g hardware is fully backward compatible with 802.11b hardware and therefore is encumbered with legacy issues that reduce throughput when compared to 802.11a by ~21%.
The then-proposed 802.11g standard was rapidly adopted by consumers starting in January 2003, well before ratification, due to the desire for higher data rates as well as to reductions in manufacturing costs. By summer 2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point. Details of making b and g work well together occupied much of the lingering technical process; in an 802.11g network, however, activity of an 802.11b participant will reduce the data rate of the overall 802.11g network.
Like 802.11b, 802.11g devices suffer interference from other products operating in the 2.4 GHz band, for example wireless keyboards.

802.11n

802.11n is an amendment which improves upon the previous 802.11 standards by adding multiple-input multiple-output antennas (MIMO). 802.11n operates on both the 2.4 GHz and the lesser used 5 GHz bands. The IEEE has approved the amendment and it was published in October 2009. Prior to the final ratification, enterprises were already migrating to 802.11n networks based on the Wi-Fi Alliance's certification of products conforming to a 2007 draft of the 802.11n proposal.

802.11ac

IEEE 802.11ac is a standard under development which will provide high throughput in the 5 GHz band. This specification will enable multi-station WLAN throughput of at least 1 gigabits per second and a maximum single link throughput of at least 500 megabits per second, by using wider RF bandwidth (80 or 160 MHz), more streams (up to 8), and high-density modulation (up to 256 QAM).

First 802.11ac Wi-Fi router on sale from buffalo.
Next time, just before you purchase such device, make sure to follow and always go for the latest standard!

0 people replied to “Is your WiFi device fast enough?”

Post a Comment